Scientists Genetically Alter Bacteria to Consume Waste and Excrete Petroleum

Discussion in 'Current Events' started by Advent, Jun 15, 2008.

Thread Status:
Not open for further replies.
  1. Advent 【DRAGON BALLSY】

    Joined:
    Feb 24, 2007
    Gender:
    Overcooked poptart
    523
    [QUOTE="TimesOnline.co.uk“]Ten years ago I could never have imagined I’d be doing this,†says Greg Pal, 33, a former software executive, as he squints into the late afternoon Californian sun. “I mean, this is essentially agriculture, right? But the people I talk to – especially the ones coming out of business school – this is the one hot area everyone wants to get into.â€

    He means bugs. To be more precise: the genetic alteration of bugs – very, very small ones – so that when they feed on agricultural waste such as woodchips or wheat straw, they do something extraordinary. They excrete crude oil.

    Unbelievably, this is not science fiction. Mr Pal holds up a small beaker of bug excretion that could, theoretically, be poured into the tank of the giant Lexus SUV next to us. Not that Mr Pal is willing to risk it just yet. He gives it a month before the first vehicle is filled up on what he calls “renewable petroleumâ€. After that, he grins, “it’s a brave new worldâ€.

    Mr Pal is a senior director of LS9, one of several companies in or near Silicon Valley that have spurned traditional high-tech activities such as software and networking and embarked instead on an extraordinary race to make $140-a-barrel oil (£70) from Saudi Arabia obsolete. “All of us here – everyone in this company and in this industry, are aware of the urgency,†Mr Pal says.

    What is most remarkable about what they are doing is that instead of trying to reengineer the global economy – as is required, for example, for the use of hydrogen fuel – they are trying to make a product that is interchangeable with oil. The company claims that this “Oil 2.0†will not only be renewable but also carbon negative – meaning that the carbon it emits will be less than that sucked from the atmosphere by the raw materials from which it is made.

    LS9 has already convinced one oil industry veteran of its plan: Bob Walsh, 50, who now serves as the firm’s president after a 26-year career at Shell, most recently running European supply operations in London. “How many times in your life do you get the opportunity to grow a multi-billion-dollar company?†he asks. It is a bold statement from a man who works in a glorified cubicle in a San Francisco industrial estate for a company that describes itself as being “prerevenueâ€.

    Inside LS9’s cluttered laboratory – funded by $20 million of start-up capital from investors including Vinod Khosla, the Indian-American entrepreneur who co-founded Sun Micro-systems – Mr Pal explains that LS9’s bugs are single-cell organisms, each a fraction of a billionth the size of an ant. They start out as industrial yeast or nonpathogenic strains of E. coli, but LS9 modifies them by custom-de-signing their DNA. “Five to seven years ago, that process would have taken months and cost hundreds of thousands of dollars,†he says. “Now it can take weeks and cost maybe $20,000.â€

    Because crude oil (which can be refined into other products, such as petroleum or jet fuel) is only a few molecular stages removed from the fatty acids normally excreted by yeast or E. coli during fermentation, it does not take much fiddling to get the desired result.

    For fermentation to take place you need raw material, or feedstock, as it is known in the biofuels industry. Anything will do as long as it can be broken down into sugars, with the byproduct ideally burnt to produce electricity to run the plant.

    The company is not interested in using corn as feedstock, given the much-publicised problems created by using food crops for fuel, such as the tortilla inflation that recently caused food riots in Mexico City. Instead, different types of agricultural waste will be used according to whatever makes sense for the local climate and economy: wheat straw in California, for example, or woodchips in the South.

    Using genetically modified bugs for fermentation is essentially the same as using natural bacteria to produce ethanol, although the energy-intensive final process of distillation is virtually eliminated because the bugs excrete a substance that is almost pump-ready.

    The closest that LS9 has come to mass production is a 1,000-litre fermenting machine, which looks like a large stainless-steel jar, next to a wardrobe-sized computer connected by a tangle of cables and tubes. It has not yet been plugged in. The machine produces the equivalent of one barrel a week and takes up 40 sq ft of floor space.

    However, to substitute America’s weekly oil consumption of 143 million barrels, you would need a facility that covered about 205 square miles, an area roughly the size of Chicago.

    That is the main problem: although LS9 can produce its bug fuel in laboratory beakers, it has no idea whether it will be able produce the same results on a nationwide or even global scale.

    “Our plan is to have a demonstration-scale plant operational by 2010 and, in parallel, we’ll be working on the design and construction of a commercial-scale facility to open in 2011,†says Mr Pal, adding that if LS9 used Brazilian sugar cane as its feedstock, its fuel would probably cost about $50 a barrel.

    Are Americans ready to be putting genetically modified bug excretion in their cars? “It’s not the same as with food,†Mr Pal says. “We’re putting these bacteria in a very isolated container: their entire universe is in that tank. When we’re done with them, they’re destroyed.â€

    Besides, he says, there is greater good being served. “I have two children, and climate change is something that they are going to face. The energy crisis is something that they are going to face. We have a collective responsibility to do this.â€

    This sounds exciting, but still involves the "burning" of biomass that would otherwise have fostered soil health. There was no "waste" biomass before humans arrived, and there is none now. Distilled to its essence, the scheme is still a trade-off: burning plant material to effect transportation.

    There is no reason not to burn petroleum products. We all know now that man-made global warming is a myth and there is no danger from carbon emissions. We need to maximize supply to get the price down. We need more liquid oil, oil shale, tar sands, coal liquification, algae, bacteria, etc.; now.

    Claiming carbon negativity is interesting. It's possible to argue that this is better than regular petroleum since growing new organic material will remove carbon. However, arguing it is better than technologies that do not emit carbon because it creates an incentive to grow more is presumptuous.

    Tom Hughes-Croucher, London, UK[/quote]

    I like the idea. It seems very promising.
     
  2. Xephos Neko, gamer, animelover, and artist :3 *purrs*

    Joined:
    Apr 2, 2007
    Gender:
    Male
    Location:
    San Jose, CA
    77
    Sounds great! That way we get more fuel more efficiently and then pay less money now. :3
     
  3. Inasuma "pumpkin"

    Joined:
    Sep 25, 2006
    Location:
    Indigo Plateau
    277
    I can't imagine those bacterium producing much petroleum. They're awfully small, aren't they?

    In any case, I suppose this is good. I would imagine that this isn't enough to sustain anything. Sounds more like a scientific feat and nothing more. But eh, if it can be done in mass I suppose it could be good.
     
  4. Haseo Knight of Light

    Joined:
    Dec 29, 2007
    Location:
    Land of Slush and Plateaus
    438
    Great, more air pollution. Instead of focusing on petroleum, we should try to find a different way to power our vehicles. Like water, it never dissappears and there's tons of it.
     
  5. Cin Derp Derp Derp Derp Derp Derp Derp Derp Derp Derp

    Joined:
    Sep 26, 2006
    Location:
    :uoıʇɐɔo1
    241
    I'd have to agree with Haseo, whether or not we're running out of petroleum isn't really the problem, we should be looking for alternative fuel sources anyway.

    And as for the bacterium themselves, this could be kind of dangerous. Imagine getting 1 or 2 of the bacteria inside yourself?
     
  6. Marluxia13579 Twilight Town Denizen

    Joined:
    Jun 13, 2008
    12
    248
    That sucks. Just when I thought the environment had some chance of surviving, they come up with a new way of making petroleum!

    Could they not spend the time on devising cleaner sources of fuel? They could work on hydrogen fuelled cars, solar power etc.
     
  7. Repliku Chaser

    353
    I could see it being cool to make petroleum jelly and other such things but really think we should be moving off petro for cars altogether. Also, there's a small worry here that what if the bacteria stuff escaped? These things happen and how would it affect tons of people? It has potential in some areas but I have to disagree that powering cars with it is the way to actually go. I think instead we should still be working on electric cars, improving hybrids and use hydrogen cars etc.
     
Thread Status:
Not open for further replies.